top of page

Ernährung des Menschen

Die Ernährung des Menschen, bestehend aus Getränken und Nahrungsmitteln, dient dem Menschen zum Aufbau seines Körpers sowie der Aufrechterhaltung seiner Lebensfunktionen. Sie beeinflusst auch sein körperliches, geistiges, physiologisches und soziales Wohlbefinden. Der bewusste Umgang mit der Zufuhr von fester Nahrung und Flüssigkeit ist zudem ein fester Bestandteil der menschlichen Kultur und vieler Religionen und Weltanschauungen.



Der menschlichen Ernährung dienen rohe, gekochte oder anders zubereitete, frische oder konservierte Nahrungsmittel (siehe auch Ökotrophologie). Fehlfunktionen bei der Nahrungsaufnahme werden als Ernährungsstörungen bezeichnet.


Der heutige Mensch ernährt sich omnivor und weist bezüglich des Verdauungstrakts mehr Ähnlichkeiten mit fleischfressenden Primatenarten auf als mit pflanzenfressenden.[1] Die Individuen der Gattung Australopithecus, aus der die Gattung des Menschen (die Gattung Homo) hervorging, ernährten sich hingegen vor drei bis vier Millionen Jahren noch überwiegend pflanzlich.


Frühe Verwandte der Vorfahren des Menschen

Aus dem Abrieb und aus anderen Merkmalen ihrer Zähne wurde geschlossen, dass die frühen Vertreter der Hominini (Australopithecus anamensis, Australopithecus afarensis, Australopithecus africanus und Homo rudolfensis) sich von einer überwiegend pflanzlichen Kost ernährten, vergleichbar mit den heutigen Pavianen. Frühe Hinweise auf Fleischverzehr sind 2,4 Millionen Jahre alte Schnittspuren an fossilen Knochen von der Fundstelle Ain Boucherit in Algerien.[2] 3,3 Millionen Jahre alt sind zudem Einkerbungen an Wildtierknochen aus Dikika, die Australopithecus afarensis zugeschrieben wurden,[3] möglicherweise aber auch von Krokodilzähnen stammen.[4][5]


Erst Homo habilis, mit dessen rund zwei Millionen Jahre alten Fossilien Steinwerkzeuge und als gesichert geltende Schnittspuren an Knochen gefunden wurden, wird heute zugeschrieben, dass er in etwas größerem Maße als die Individuen früherer Arten der Hominini das Fleisch großer Wirbeltiere verzehrt hat.[6] Offenbar wurden damals mit Hilfe von Steinwerkzeugen zusätzliche Nahrungsquellen – Fleisch und Knochenmark – erschlossen. Dies geht jedenfalls aus 1,95 Millionen Jahre alten Knochenfunden hervor, die in Kenia geborgen wurden und bezeugen, dass damals bereits neben Antilopenfleisch auch das Fleisch zahlreicher im Wasser lebender Tiere – darunter Schildkröten, Krokodile und Fische – verzehrt wurde.[7] Krankhafte Veränderungen an einem 1,5 Millionen Jahre alten, den Hominini zugeschriebenen Schädelknochen eines Kleinkindes (Olduvai Hominid OH 81) wurden zudem als Folge einer Anämie interpretiert, eine Erkrankung, die mit Eisenmangel in Verbindung gebracht wird. Hier gibt es Spekulationen, diese Anämie könnte darauf hinweisen, dass zu diesem Zeitpunkt bereits eine Anpassung an einen regelmäßigen Verzehr von Fleisch stattgefunden habe.[8]


Im weiteren Verlauf der Stammesgeschichte des Menschen, insbesondere in der Spätphase des Homo erectus, nahm das Hirnvolumen immer weiter zu.[9] Viele Wissenschaftler gehen von einem erhöhten Bedarf an Proteinen in dieser Phase aus, die in tierischer Kost leichter zugänglich sind.[10] Homo erectus erlernte zudem den Umgang mit Feuer und begann es zur Erschließung zusätzlicher Nahrungsquellen zu nutzen.[11]


Frühe Belege für Jagden

Spätestens vor 450.000 Jahren gab es Jagdaktivitäten, wie Funde von Waffenresten von Homo heidelbergensis in Europa eindeutig belegen.[12] Es wird ein stetig wachsender Fleischanteil in der Ernährung vermutet.[13] was in der Fachwelt aber nicht unwidersprochen ist. Zum einen könnten Knollen und Zwiebeln doch einen höheren Anteil an der Nahrung des späten Homo erectus (= Homo heidelbergensis) gehabt haben, zum anderen könnte vor allem das Sammeln und Fangen von Kleintieren, wie Nager oder Schildkröten, zur Deckung des Nahrungsbedarfs gedient haben. Womöglich wird die Bedeutung der Jagd also überschätzt. An Funden aus der Höhle von Arago bei Tautavel in Südfrankreich wurde beispielsweise die Abnutzung der Zähne von Homo heidelbergensis mikroskopisch untersucht. Die Ergebnisse ließen auf eine raue Nahrung schließen, die zu mindestens 80 Prozent aus pflanzlichen Anteilen bestand.[14] Zu beachten ist hier, dass aus dem europäischen Homo heidelbergensis zwar der Neandertaler hervorging, nicht aber der anatomisch moderne Mensch (Homo sapiens). Jedoch wird dem afrikanischen Homo rhodesiensis, der vermutlich zum Formenkreis des sogenannten archaischen Homo sapiens gehört, wegen seiner stark abgenutzten Zähne ebenfalls der Verzehr von überwiegend sehr rauer pflanzlicher Nahrung zugeschrieben.[15]


Die mehr als 150.000 Jahre alten Hinterlassenschaften der afrikanischen Pinnacle-Point-Menschen verweisen auf eine intensive Nutzung von Meeresfrüchten. Der älteste Beleg für Fischfang auf dem offenen Meer stammt aus Osttimor und wurde auf ein Alter von 42.000 Jahren datiert.[16]


Der anatomisch moderne Mensch

Nach heutigem Kenntnisstand des Verlaufs der Hominisation ist der anatomisch moderne Mensch (Homo sapiens) demnach „von Natur aus“ weder ein reiner Fleischfresser (Carnivore) noch ein reiner Pflanzenfresser (Herbivore), sondern ein Allesfresser (Omnivore).[17][18] Ethnographische Auswertungen von weltweit 229 heute noch existierenden Jäger- und Sammlervölkern ergab, dass der Anteil pflanzlicher Kost zwischen 0 und 85 % variiert, während tierische Nahrung einen Beitrag von 6 bis 100 % leistet. Diese enorme Bandbreite der Lebensmittelauswahl ist auf die unterschiedlichen geographischen und klimatischen Lebensverhältnisse zurückzuführen.[19] Die omnivore Lebensweise erleichterte es dem modernen Menschen, sich nahezu jedes Ökosystem der Erde als Lebensraum zu erschließen.[20] Während sich einige kleinere Bevölkerungsgruppen wie die Evenki in Sibirien, die Eskimos und die Massai auch heute noch überwiegend fleischlich ernähren, leben große Teile der südasiatischen Bevölkerung sowie bäuerliche Völker in den Anden in erster Linie von pflanzlichen Nahrungsmitteln.


Vor rund 10.000 Jahren führte die Verbreitung des Ackerbaus zur sogenannten neolithischen Revolution. Diese kulturell äußerst bedeutsame Entwicklung ermöglichte dem Menschen die Sesshaftigkeit und führte durch die planvolle Nutzung der Natur zu einer größeren Unabhängigkeit von äußeren Bedingungen.[21] Teilweise verschlechterte dies allerdings die Ernährungslage der Menschen durch eine drastische Verengung des Nahrungsangebots auf wenige Feldfrüchte.[22][23][24]


Heutige Ernährungsformen


genußfertige Lebensmittel


Lebensmittel, die zum Teil noch zubereitet werden müssen, bevor diese genußfertig sind

In erster Linie ist das, was der Mensch isst, wie er es zubereitet (Kochkunst) und zu sich nimmt (Esskultur), sowie das, was er „nicht“ isst (Nahrungstabu), von seinem Lebensraum und seiner Kultur abhängig, und damit starken regionalen und zeitlichen[25] Unterschieden unterworfen. Trotz der teils extremen Unterschiede der traditionellen Regionalküchen wird der Bedarf an Nährstoffen in der Regel gedeckt.


Da sich aber vor allem in den Industrieländern die Ernährungsweise von den traditionellen Formen wegentwickelt und sich durch die Zunahme sitzender Tätigkeiten und abnehmender körperlicher Betätigung der Lebensstil und damit der Energie- und Nährstoffbedarf insgesamt verändert hat, gibt es heutzutage bei vielen Menschen ein Missverhältnis zwischen Nährstoffbedarf und Nährstoffzufuhr. Deshalb wird die Frage nach der richtigen Ernährung wegen der Bedeutung für die Gesundheit in Abhängigkeit von der Lebensweise durch die Diätetik wissenschaftlich erforscht.


Insbesondere die Zunahme an Zivilisationskrankheiten wird der modernen Fehlernährung zugeschrieben. Dies hat dazu geführt, dass es eine Vielzahl von Ansichten, Theorien und Lehren über die richtige Ernährung gibt. Beispiele sind die Theorien von der Vollwerternährung, die Rohkost-Lehre, die Ernährung nach den Fünf Elementen aus der traditionellen chinesischen Medizin, die Ayurveda-Lehre, dem Pescetarismus, der Vegetarismus und der Veganismus, die Makrobiotik (Ernährungswissenschaft aus der Perspektive von Yin und Yang), die Trennkost-Lehre und die Steinzeiternährung, die in die Richtung der Low-Carb-Ernährung geht. Die Antworten auf die Frage nach einer richtigen Ernährung sind oft weltanschaulich beeinflusst.


Die Deutsche Gesellschaft für Ernährung hat Regeln zur Zusammenstellung formuliert, die sie als „vollwertige Ernährung“ bezeichnet.


Nährstoffe

→ Hauptartikel: Digestion

Die Nahrung wird chemisch in ihre Grundbestandteile aufgetrennt.


Als Makronährstoffe werden Substanzen zusammengefasst, die der Körper in verhältnismäßig großen Mengen benötigt und die entweder als Energielieferanten oder als Baustoffe dienen. Es gibt vier Makronährstoffgruppen: Proteine, Fette, Kohlenhydrate und Ballaststoffe.


Als Mikronährstoffe werden Substanzen zusammengefasst, die der Körper in geringen Mengen benötigt und z. B. Teil von Enzymen sind. Mikronährstoffe sind Gegenstand der Lebensmittelforschung.


Trotz der Wichtigkeit von Mikronährstoffen für den Körper – konzentriert sich die Züchtung und Verarbeitung von Lebensmitteln in der Landwirtschaft auf die Makronährstoffe (Kohlenhydrate, Proteine und Fette) und visuelle Aspekte. Für den Konsumenten besteht in der Praxis keine Möglichkeit, die Qualität von Lebensmitteln in dieser Hinsicht (etwa visuell oder geschmacklich) zu bewerten.


Proteine

→ Hauptartikel: Protein

Proteine sind vor allem für den Muskel- und Zellaufbau nötig. Auch können sie im Körper zur Energiegewinnung verwertet werden, die DGE empfiehlt hier, dass mindestens 10 % des Energiebedarfs aus Proteinen und Aminosäuren gedeckt werden. Da die Anteile der verschiedenen Aminosäuren aus tierischen Quellen eher dem Bedarf des Menschen entsprechen, besitzen tierische Quellen eine höhere biologische Wertigkeit. Die Annahme, dass 10 % reichen, trifft jedoch nur unter sehr engen Voraussetzungen zu (wenig Körpergewicht, kein Sport, keine körperliche Arbeit etc.), da für die Aufrechterhaltung der Proteinstrukturen des Körpers 0,8 g/kg Körpergewicht als angemessen gelten. Soll nun mit Training auch noch Muskelmasse aufgebaut oder im Rahmen einer Diät (Low Carb) Protein im Energiestoffwechsel eingesetzt werden, so reichen die 0,8 g/kg bei weitem nicht aus. Bis ca. 4 g/kg Körpergewicht kann die Leber am Tag verstoffwechseln. Wo dazwischen die individuell richtige Menge liegt, hängt von der körperlichen Belastung (Training) ab.[26]


Proteinreiche Lebensmittel enthalten mindestens 10 g/100 g verzehrbare Masse. Die folgenden Werte stammen aus der Lebensmitteltabelle für die Praxis von Souci, Fachmann, Kraut.


Kohlenhydrate stellen eine der drei Quellen der Energiegewinnung dar, sind jedoch im Gegensatz zu den anderen beiden, Proteinen und Fettsäuren, kein essenzieller Nahrungsbestandteil. Laut Empfehlung der Deutschen Gesellschaft für Ernährung (DGE) sollen 55 % des Energiebedarfs aus Kohlenhydraten gedeckt werden.[31]


Die DGE empfiehlt vor allem Kohlenhydrate aus ballaststoffreichen Pflanzen, da diese langsamer vom Körper aufgenommen werden (niedriger glykämischer Index). Aufgrund der geringen Energiedichte ballaststoffreicher Pflanzen sind entsprechend große Mengen zu konsumieren, wodurch diese mengenmäßig die Hauptbestandteile der Ernährung ausmachen sollten.


Einfachzucker gelangen zügig ins Blut, von dort in die Zellen und bieten sich als schnell verfügbare Energiequelle an. Allerdings ist diese nicht lange im Blut verfügbar, da der Körper auf große Mengen Zucker im Blut mit entsprechend großen Mengen an Insulin reagiert. Das Insulin sorgt u. a. dafür, dass die überschüssige Energie in Form von Fett in den Fettzellen eingelagert wird. Der Regelkreislauf dafür ist recht komplex und wird im Artikel Energiebilanz der Ernährung näher erläutert.


Die weltweit wichtigsten Lieferanten von Kohlenhydraten zur menschlichen Ernährung stellen


  • die Amaryllisgewächse, hauptsächlich Zwiebel

  • die Doldenblütler wie Karotte und Pastinak

  • die Fuchsschwanzgewächse, vor allem Zuckerrübe, Mangold, Futterrübe, Rote Bete, Spinat, Amarant und Quinoa

  • die Hülsenfrüchtler

  • die Korbblütler wie Schwarzwurzel und Yacon

  • die Kreuzblütler wie Speiserübe und die Steckrübe, Raps und der Gemüsekohl

  • die Kürbisgewächse, die bedeutendsten sind Gartenkürbis (Cucurbita pepo), Zuckermelone (Cucumis melo), Gurke (Cucumis sativus) und Wassermelone (Citrullus lanatus)

  • die Nachtschattengewächse wie Kartoffel, Tomaten, Paprika (erst nach Christoph Kolumbus in Europa angebaut)

  • die Süßgräser, also sämtliche Getreide

  • die Windengewächse, die Süßkartoffel

  • die Yamswurzelgewächse, die Yamswurzel


Ballaststoffe (engl. „dietary fiber“, seltener „non nutritive carbohydrates“) sind weitgehend unverdauliche Nahrungsbestandteile, meist Kohlenhydrate, die vorwiegend in pflanzlichen Lebensmitteln vorkommen. Sie finden sich vor allem in Getreide, Obst, Gemüse, Hülsenfrüchten sowie in geringen Mengen auch in Milch. Der Einfachheit wegen teilt man die Ballaststoffe in wasserlösliche (wie Johannisbrotkernmehl, Guar, Pektin und Dextrine) und wasserunlösliche (zum Beispiel Cellulose) ein. Ballaststoffe gelten mittlerweile, ganz anders als die Bezeichnung vermuten lässt, als wichtiger Bestandteil der menschlichen Ernährung. Die EU-Verordnung zur Nährwertkennzeichnung weist ihnen pauschal einen Brennwert von 8 kJ/g zu.


Der in der Nährwertetabelle angegebene Ballaststoffgehalt eines Lebensmittels unterliegt gesetzlichen Bestimmungen. § 2 Nr. 11 der Nährwert-Kennzeichnungsverordnung (NKV) und Anhang I Nr. 12 der Lebensmittelinformationsverordnung definieren u. a.:


„Ballaststoffe“ bedeutet Kohlenhydratpolymere mit drei oder mehr Monomereinheiten, die im Dünndarm des Menschen weder verdaut noch absorbiert werden und zu folgenden Klassen zählen:

  • essbare Kohlenhydratpolymere, die in Lebensmitteln, wenn diese verzehrt werden, auf natürliche Weise vorkommen;

  • essbare Kohlenhydratpolymere, die auf physikalische, enzymatische oder chemische Weise aus Lebensmittelrohstoffen gewonnen werden und laut allgemein anerkannten wissenschaftlichen Nachweisen eine positive physiologische Wirkung besitzen;

  • essbare synthetische Kohlenhydratpolymere, die laut allgemein anerkannten wissenschaftlichen Nachweisen eine positive physiologische Wirkung besitzen;


Der Ausdruck Rohfaser (engl. „crude fiber“) wurde vor mehr als 100 Jahren in der Futtermittelanalytik geprägt. Da manche Ballaststoffe auch eine faserige Struktur haben, werden sie oft irrtümlich mit diesen gleichgesetzt. Der Ballaststoffgehalt von Nahrungsmitteln übersteigt immer den Rohfasergehalt, der fast ausschließlich aus Cellulose besteht. In der Literatur werden Umrechnungsfaktoren zwischen 2 und 6 angegeben, also z. B. Rohfasergehalt × 6 = Ballaststoffgehalt. Bei Getreide und Hülsenfrüchten gelten eher Umrechnungswerte von 4 bis 6, bei Obst und Gemüse etwa 2 bis 3.


Ballaststoffe kommen in pflanzlichen Nahrungsmitteln in unterschiedlicher Menge vor. Man teilt Ballaststoffe grob in wasserunlösliche und wasserlösliche ein; aufgrund ihrer Einsetzbarkeit als Verdickungsmittel (siehe auch Schleimstoffe) werden einige speziell für die Verwendung als Lebensmittelzusatzstoff produziert (Alginate als Salze der Alginsäure aus verschiedenen Algen, Agar ebenfalls aus Algen, Xanthan usw.).


Der Ballaststoffgehalt der Lebensmittel ist sehr unterschiedlich. Neben dem absoluten Gehalt ist das Verhältnis zum Kohlenhydratgehalt von ernährungsphysiologischem Interesse.


Die folgenden Tabellen geben einige Beispiele an. Eine ausführlichere Tabelle ist in den Weblinks angegeben.[1] Nach der vom Max Rubner-Institut herausgegebenen Nationalen Verzehrsstudie II sind Getreideerzeugnisse mit 41 % die wichtigste Ballaststoffquelle der Deutschen, vor Obst (21 %) und Gemüse (16 %).[2] Alle deutschen Typenmehle können nach den restriktiven EU-Richtlinien als Ballaststoffquelle bezeichnet werden, da sie mehr als 3 % Ballaststoffe aufweisen.[3]


Ballaststoffe können bis zum 100fachen ihres Eigengewichtes an Wasser binden. Sehr ballaststoffhaltige Produkte wie Leinsamen oder Weizenkleie sollten daher von ausreichend Flüssigkeit begleitet werden, da der Verdauungsbrei sonst im Darm verhärtet und eine Verstopfung begünstigt statt ihr entgegenzuwirken.


Ballaststoffe sind vollständig oder teilweise unverdaulich, weil im Verdauungstrakt entweder kein Enzym zur Spaltung der vorliegenden (glycosidischen) Bindung oder kein Transportprotein für den aktiven Transport durch die Zellmembran aus dem Darm in die Darmschleimhaut gebildet wird. Der Mensch beispielsweise besitzt Enzyme, um glycosidische Bindungen vom Typ α-1→2 (Saccharose) oder α-1→4 (z. B. Maltose) zu spalten, aber keines für Verbindungen mit dem β-1→4-Typ (Cellulose). Ebenso besitzt der Mensch eine ganze Reihe von Glucosetransportern. Im Falle von Isomalt liegt eine Bindung vor, die gespalten werden kann; die Glucose, die 50 % ausmacht, wird durch die Darmwand resorbiert und in den Körperzellen metabolisiert, das Sorbitol und das Mannitol (je 25 %) hingegen können nicht durch die Darmwand resorbiert werden.


Ballaststoffe in der Nahrung vergrößern das Nahrungsvolumen, ohne zugleich den Energiegehalt bedeutend zu steigern. Einige Ballaststoffe wie Kleie oder Flohsamenschalen können sehr viel Wasser binden. Sofern sie nicht schon vor der Aufnahme hinreichend gequollen sind, nehmen sie im Magen weiteres Wasser auf. Die daraus resultierende Volumenzunahme führt zu einer weiteren Dehnung des Magensackes nach der Mahlzeit, die ihrerseits zu einer Senkung des appetitanregenden Ghrelin-Spiegels und somit zur Zunahme des Sättigungsgefühls führt.


Ballaststoffe verlängern die Magenverweildauer des Speisebreis.[4] Zum einen dauert das Aufquellen eine gewisse Zeit, zum anderen muss nachträglich Wasser getrunken oder vom Magen sezerniert werden, um diesem die zur Magenpassage des Nahrungsbreis nötige Mindestfluidität bzw. Maximalviskosität einzustellen.


Darm

Die im Speisebrei vorhandenen Ballaststoffe sorgen durch ihre Fähigkeit, Wasser zu binden, für eine Zunahme des Volumens. Der Druck, den ballaststoffreicher Speisebrei auf die Darmwand ausübt, regt die Peristaltik an, was die Verweildauer ballaststoffreicher Kost im Darm verkürzt (im Gegensatz zum Magen).


Kein höheres Tier besitzt eigene Enzyme zur Spaltung wasserunlöslicher Ballaststoffe, insbesondere Cellulose. Wiederkäuer können Cellulose mithilfe der Mikroorganismen, die ihren Pansen besiedeln, dennoch enzymatisch spalten. Im Dünn- und auch im Dickdarm dagegen fehlen entsprechende Bakterien, so dass wasserunlösliche Ballaststoffe den weiteren Verdauungstrakt praktisch unverändert passieren.


Ein Teil der wasserlöslichen Ballaststoffe wird hingegen durch die Darmflora des Dickdarms fermentiert. Dabei entstehen verschiedene Mengen an geruchlosen Gasen wie z. B. Kohlenstoffdioxid, Methan und Wasserstoff, aber auch kurzkettige Fettsäuren (engl. SCFA (short chain fatty acids)) wie Acetat, Propionat und Butyrat, die gegenüber mittel- und langkettigen Fettsäuren eine Reihe von Besonderheiten aufweisen (siehe Fettverdauung). Sie werden von der Dickdarmschleimhaut weitgehend resorbiert und tragen zur Ernährung der Schleimhautzellen bei.


Einige Ballaststoffe werden von Pflanzen gebildet, um Fraßfeinde abzuwehren. Solche schlecht verdauten Ballaststoffen können in toxische Gärungsalkohole und biogene Amine umgesetzt werden, welche Darmschleimhaut und Immunabwehr schädigen.[5]


Neben Wasser binden Ballaststoffe auch Mineralstoffe, Toxine, Gallensäuren sowie Mikroorganismen, die dann im Stuhl ausgeschieden werden. Bei ausgewogener Mischkost stellt das kein Problem dar, bei zusätzlicher Zufuhr von Ballaststoffen (etwa als Nahrungsergänzungsmittel) kann jedoch längerfristig ein Mineralstoffmangel auftreten.[6]


Ernährungsphysiologische Einschätzung

Die Vorstellung, dass eine ballaststoffreiche Kost gesundheitsförderlich ist und der Vorbeugung gegen Zivilisationskrankheiten dient, basiert u. a. auf einer epidemiologische Studie von Burkitt und Trowell in den 1970er Jahren,[7] die nahelegte, dass Afrikaner, die sich ballaststoffreich ernähren, erheblich seltener an bestimmten Zivilisationskrankheiten erkranken, als Europäer und Amerikaner mit moderner, ballaststoffarmer Kost. Aufgrund methodischer Mängel gilt diese Studie heute nicht mehr als Nachweis der gesundheitsfördernden Wirkung. Seither durchgeführte Kontrollstudien konnten die Hypothese teilweise stützen, teilweise kam es zu widersprüchlichen Ergebnissen.


Bekannt ist, dass unverdauliche humane Milch-Oligosaccharide in der Muttermilch das Infektionsrisiko für manche Krankheitserreger senken.


Fette und fette Öle (Neutralfette) sind Ester des dreiwertigen Alkohols Glycerin (Propan-1,2,3-triol) mit drei, meist verschiedenen, überwiegend geradzahligen und unverzweigten aliphatischen Monocarbonsäuren, den Fettsäuren. Verbindungen dieser Art werden auch Triglyceride genannt, die IUPAC empfiehlt jedoch als Name Triacylglycerine.


Je nachdem, ob ein Fett bei Raumtemperatur fest oder flüssig ist, spricht man von Fett oder fettem Öl. Bekannteste Fette sind die namensgebenden Stoffgemische aus verschiedenen Fettsäuretriglyceriden, die aus Tieren gewonnen werden, der Ausdruck fettes Öl grenzt die (dünn)flüssigen Fette von anderen Gruppen der Öle (allgemein unspezifisch diverse Gruppen flüssiger organischer Verbindungen) ab.


Als Naturstoffe werden Fette den Lipiden zugeordnet und sind in lipophilen organischen Lösungsmitteln wie Petrolether, Ether und Benzol löslich. Fette sind mit einer Energiedichte von 37 kJ/g (9 kcal/g)[1] der wichtigste Energiespeicher für Menschen, Tiere und auch einige Pflanzen. In Pflanzen findet man Fette vornehmlich in Samen oder Keimen, im tierischen Organismus im Fettgewebe. Fette und fette Öle finden Verwendung als Nahrungsmittel (Speisefette und -öle) und werden auch technisch zum Beispiel als Schmierstoff (Schmierfette, Schmieröle) eingesetzt.


Das Wort Fett ist eine Substantivierung des ursprünglich niederd. Adjektivs mnd. vet (oberd.: feist), welches seinerseits das 2. Partizip des im Nhd. untergegangenen Verbs mhd. veiȥen „fett machen“ darstellt. Zugrunde liegt eine Erweiterung der idg. Wurzel pē̆[i]- „strotzen, fett sein“.[2]


Gewinnung

Fette werden entweder aus tierischen Produkten oder aus Pflanzen (Nutzpflanzen), teilweise auch in der chemischen Industrie gewonnen. Tierische Fette werden entweder direkt aus Fettgewebe geschmolzen (Schmalz, Tran, Talg) oder aus Milch (Butter) gewonnen. Die für Lebensmittel verwendeten pflanzlichen Öle und Fette werden aus Ölpflanzen oder Ölsaat durch Pressung oder Extraktion mit Dampf oder Lösungsmitteln gewonnen. Raffination und damit Entfernung unerwünschter Inhaltsstoffe macht die Fette für den Menschen nutzbar. Margarine ist ursprünglich tierischer Herkunft gewesen, wird heutzutage aber durch Hydrierung (Fetthärtung) der C=C-Doppelbindung(en) in den Fettsäureresten pflanzlicher Öle (Sonnenblumenöl, Rapsöl) gewonnen. Dabei können sich auch trans-Fettsäuren bilden, was unerwünscht ist.


In Deutschland gab es im Jahr 2006 53 Betriebe, die mit der Fett-Gewinnung und -Raffination befasst waren. Mit 3445 Mitarbeitern wurde ein Gesamtumsatz von 131 Millionen Euro erreicht. Die Raffination von Fetten ist mit 82,7 Millionen Euro ein wichtiger Wirtschaftszweig.[3]


Im Jahr 2007 wurden in Deutschland 2,4 Millionen Tonnen Rapsöl, 685.300 Tonnen Sojaöl, 47.700 Tonnen Sonnenblumenöl, 1.961 Tonnen Leinöl hergestellt. Raffiniert wurden 2007 hauptsächlich Rapsöl (1,55 Millionen Tonnen), Sonnenblumenöl (195.000 Tonnen), Sojaöl (510.600 Tonnen), Palmöl (504.000 Tonnen). Ein Großteil der Produkte ist für den Export bestimmt. Die Produktion von Margarine (2007: 430.000 Tonnen) und Butter (2007: 1,35 Millionen Tonnen) ist ebenfalls wichtig.


Das Wort Fett ist eine Substantivierung des ursprünglich niederd. Adjektivs mnd. vet (oberd.: feist), welches seinerseits das 2. Partizip des im Nhd. untergegangenen Verbs mhd. veiȥen „fett machen“ darstellt. Zugrunde liegt eine Erweiterung der idg. Wurzel pē̆[i]- „strotzen, fett sein“.[2]


Viele Stoffe werden nach der Menge, in der sie im Körper vorkommen oder benötigt werden, unterschieden. Hierbei sind Mengenelemente im menschlichen Körper zu {\displaystyle >50\,\mathrm {\tfrac {mg}{kg}} } {\displaystyle >50\,\mathrm {\tfrac {mg}{kg}} } enthalten, während Spurenelemente in geringerer Konzentration vorkommen. Diese Konzentration unterscheidet sich von der Häufigkeit der chemischen Elemente auf der Erde und ist somit vom Begriff der chemischen Spurenelemente zu unterscheiden.


Spurenelement (auch Mikroelement) wird allgemein ein chemisches Element genannt, das nur in geringer Konzentration oder Spuren vorkommt; bei äußerst geringer Konzentration wird auch von Ultra-Spurenelement gesprochen.


Die Häufigkeiten chemischer Elemente unterscheiden sich erheblich, betrachtet man ihr Vorkommen im Sonnensystem, im Planet Erde, in Gesteinen der Erdkruste, im Wasser von Ozeanen oder beispielsweise im menschlichen Körper. Innerhalb der jeweiligen Häufigkeitsverteilung werden die häufigen Elemente als Mengenelemente von den seltenen Spurenelementen geschieden.


Während in der Geochemie Stoffanteile und Begleitelemente von Gesteinen und Mineralen in Konzentrationen unter 0,1 % bzw. 1000 ppm als Spurenelemente bezeichnet werden, bevorzugt die analytische Chemie meist einen Schwellenwert von 100 ppm bzw. 100 µg/g (= 100 mg/kg) oder 0,01 %. Davon zu unterscheiden ist der enger gefasste biologische Begriff:


Als essentielle Spurenelemente werden in der Biologie chemische Elemente bezeichnet, die für ein Lebewesen – umgangssprachlich meist auf den Menschen bezogen – (essentiell) nötig sind und in Massenanteilen von weniger als 50 mg/kg im Organismus vorkommen. Bei Konzentrationen von weniger als 1 µg/kg wird gelegentlich auch von Ultraspurenelementen gesprochen.[1] Mikroelemente gehören zu den Mikronährstoffen.


Eine zu geringe Menge oder gar das Fehlen essentieller Spurenelemente ruft in Lebewesen Mangelerkrankungen hervor. Durch solche Mangelerscheinungen – etwa einer Anämie bei Eisenmangel oder einer Schilddrüsenvergrößerung bzw. -unterfunktion bei Iodmangel – wird die Unentbehrlichkeit (Essentialität) eines Elementes offensichtlich. Andererseits können auch Spurenelemente – wie jeder Stoff ab einer gewissen Dosis – in zu hohen Mengen nachteilige Folgen haben.


Spurenelemente werden üblicherweise beim Essen und Trinken mit der Nahrung aufgenommen, die sie in Spuren enthält. Bei verminderter Aufnahme, vermehrter Ausscheidung oder erhöhtem Bedarf kann es zu einer Unterversorgung des Körpers mit Spurenelementen kommen. Mögliche Gründe dafür sind


Ernährungsgewohnheiten – z. B. geringe Auswahl, einseitige Bevorzugung, besondere Zubereitungsformen bzw. abtrennende Aufbereitungsprozesse von Lebensmitteln

Regionale Gegebenheiten – beispielsweise sehr geringes Vorkommen in Ackerboden oder Trinkwasser

erhöhter Verlust, etwa durch Durchfallerkrankungen oder starkes Schwitzen

veränderte Bedingungen für Aufnahme, Ausscheidung und Bedarf bei unterschiedlichen Stoffwechselerkrankungen

Medizinisch wird Eisen (Fe) wegen seiner Wirkungsweise den Spurenelementen zugeordnet, im Menschen ist es durchschnittlich mit etwa 60 mg/kg enthalten.


Fluor (F) zählt dagegen nicht zu den essentiellen Spurenelementen, allerdings hat Fluorid (F−) einen Karies vorbeugenden Effekt. Als angemessene Fluoridzufuhr für Erwachsene empfiehlt das Bundesinstitut für Risikobewertung (Jahr 2006) auch bei schwangeren und stillenden Müttern eine durchschnittliche Gesamtmenge von 3,1 mg pro Tag.[2] Ein ähnlicher Wert von 0,05 mg/kg Körpergewicht für die tägliche Zufuhr wird von dem die EU-Kommission wissenschaftlich beratenden Ausschuss für Nahrungsmittelsicherheit empfohlen (Jahr 2013).[3] Die tägliche Höchstmengenempfehlung (Tolerable Upper Intake Level, UL) beträgt 7 mg für Erwachsene[2] bzw. 0,1 mg/kg Körpergewicht[3]. Eine zu hohe Fluoridzufuhr kann zu einer Fluorose der Zähne (dentale Fluorose)[4] und des Skeletts (ossäre Fluorose) führen.


Für eine Reihe von Spurenelementen sehr geringer Konzentration (Bor, Brom, Cadmium, Blei, Lithium)[1] ist bis heute ungeklärt, ob sie nur als akzidenteller („zufälliger“) Bestandteil im Menschen vorkommen oder ob ihnen irgendeine physiologische Funktion zukommt.


Eisen wird vom Körper unter anderem für den Aufbau wichtiger Proteine und die Regenerierung von roten Blutkörperchen und Muskeln benötigt. Eisenmangel ist die häufigste Ursache für eine Blutarmut (Anämie). Diese äußert sich zunächst durch eine schnelle Erschöpfung bei körperlicher Tätigkeit und im manifesten Stadium auch durch eine blasse, spröde Haut sowie brüchige Fingernägel und Haare.


Eisen ist in vielen Nahrungsmitteln in ausreichender Form vorhanden. Für die Eisenaufnahme ist der tatsächliche Eisengehalt eines Nahrungsmittels nur von untergeordneter Bedeutung. Wichtiger ist, welche Nahrungsmittel kombiniert werden. Das liegt daran, dass eine Reihe von Nahrungsbestandteilen die Eisenaufnahme sehr stark fördert beziehungsweise hemmt. Förderlich für die Resorption von Eisen aus pflanzlichen Quellen ist insbesondere eine Kombination mit Vitamin C. Dagegen hemmen beispielsweise Substanzen in Kaffee, schwarzem Tee und dem früher fälschlich als guten Eisenlieferanten empfohlenen Spinat die Eisenaufnahme besonders stark.


Vitamine sind organische Verbindungen, die der Organismus nicht als Energieträger, sondern für andere lebenswichtige Funktionen benötigt, die jedoch der Stoffwechsel nicht bedarfsdeckend synthetisieren kann. Vitamine müssen mit der Nahrung aufgenommen werden, sie gehören zu den essentiellen Stoffen. Pflanzen benötigen normalerweise keine zusätzlichen Vitamine, sie können alle für sie notwendigen organischen Stoffe selbst synthetisieren.


Einige Vitamine werden dem Körper als Vorstufen, sogenannte Provitamine zugeführt, die der Körper dann erst in die Wirkform umwandelt. Man unterteilt Vitamine in fettlösliche (lipophile) und wasserlösliche (hydrophile) Vitamine. Chemisch bilden die Vitamine keine einheitliche Stoffgruppe. Da es sich bei den Vitaminen um recht komplexe organische Moleküle handelt, kommen sie in der unbelebten Natur nicht vor. Vitamine müssen erst von Pflanzen, Bakterien oder Tieren gebildet werden.


Bei unterschiedlichen Tieren gelten zum Teil verschiedene Substanzen als Vitamine. So können etwa die meisten Tiere Vitamin C selbst produzieren, anstatt es mit der Nahrung aufnehmen zu müssen. Trockennasenprimaten, zu denen auch Menschen zählen, einige Familien in der Ordnung der Fledertiere und Sperlingsvögel, alle Echten Knochenfische sowie Meerschweinchen können dies nicht, weil ihnen das Enzym L-Gulonolactonoxidase fehlt.[1][2] Somit ist Vitamin C für die meisten Tiere kein Vitamin, sondern ein Metabolit. Katzen benötigen ebenfalls Retinol (oder Vitamin A1), nehmen aber eine Sonderstellung ein, da sie im Gegensatz zu fast allen anderen Tieren β-Carotin nicht in Retinol umwandeln können.[3]


Beim Menschen gilt die oben angegebene Definition für 13 organische Verbindungen. Von diesen können 11 auf keine Weise vom Organismus selbst synthetisiert werden. Cholecalciferol (auch Colecalciferol oder kurz Calciol; Vitamin D3 oder ungenau Vitamin D) kann der Körper selbst herstellen, sofern ausreichend Sonnenexposition besteht (Photosynthese). Eigensynthese besteht auch für Niacin, das aus der Aminosäure Tryptophan hergestellt werden kann. Die notwendige Niacinzufuhr richtet sich nach der Menge an zugeführtem Protein und wird damit von den Ernährungsgewohnheiten beeinflusst.


Vitamine sind an vielen Reaktionen des Stoffwechsels beteiligt. Ihre Aufgabe besteht in einer Regulierung der Verwertung von Kohlenhydraten, Proteinen (umgangssprachlich auch als Eiweiß bezeichnet) und Mineralstoffen, sie sorgen für deren Ab- beziehungsweise Umbau und dienen somit auch der Energiegewinnung. Vitamine stärken das Immunsystem und sind unverzichtbar beim Aufbau von Zellen, Blutkörperchen, Knochen und Zähnen. Die Vitamine unterscheiden sich hinsichtlich ihrer Wirkungen.


Ein Vitaminmangel kann entstehen als Folge eines erhöhten Bedarfs (während Schwangerschaft und Stillzeit, in der Kindheit und Jugend), aufgrund einer mangelnden Zufuhr, durch Malassimilation infolge anderer Grunderkrankungen, als Folge von Medikamenteneinnahme (orale Kontrazeptiva) oder nach parenteraler Ernährung ohne Vitaminzugabe. Auch durch Aufbewahrung und Zubereitung der Lebensmittel variiert der Vitamingehalt, so dass trotz Auswahl der richtigen Nahrungsmittel ein Mangel entstehen kann.


Dies kann zu Mangelerscheinungen führen, die graduell in eine Hypovitaminose oder Avitaminose unterteilt werden. Vitaminmangelkrankheiten sind unter den europäischen Ernährungsbedingungen selten geworden und meist auf Alkoholabhängigkeit zurückzuführen. Betroffen sein können auch alte Menschen, Raucher oder Vegetarier. Die Krankheitszeichen sind je nach dem betroffenen Vitamin verschieden. Je nach Art und Ausmaß der Schädigung kann sich der Organismus erholen. Bei Mangel an Vitamin B1 kommt es zu Beri-Beri. Ein Mangel an Vitamin C führt zu Skorbut. Vitamin-A-Mangel führt zu Nachtblindheit und trockener Haut. Vitamin-K-Mangel erhöht die Blutungsneigung, da es zur Synthese einiger Gerinnungsfaktoren benötigt wird.


Bei Alkoholikern führen gleich mehrere Faktoren zu einem Vitaminmangel. Der chronisch Suchtkranke nimmt außer dem Suchtmittel kaum andere Nahrung zu sich, er leidet an einer Mangelernährung. Die Schleimhaut des Verdauungstraktes über Speiseröhre, Magen und Dünndarm kann schwer geschädigt sein, ebenso die Bauchspeicheldrüse. Nahrungseinnahme ist verbunden mit Übelkeit, Erbrechen, Durchfall. Die Verdauung und Aufnahme im Magendarmtrakt ist gestört (Malabsorption, Maldigestion). Zu Schäden des Blutbildes und des Nervengewebes kommt es v. a. durch Mangel der Vitamine B1 (Wernicke-Korsakow-Syndrom), Vitamin B6 und Folsäure (Polyneuropathie) und B12 (perniziöse Anämie, funikuläre Myelose). Die Infektabwehr ist gemindert. Die Blutgerinnung ist – aus verschiedenen Gründen – gestört.


Eine Vitaminüberversorgung wird Hypervitaminose genannt. Die fettlöslichen Vitamine (E, D, K, A) können im Körper, meist in der Leber, gespeichert werden. Damit kann es auch zu Überdosierungen kommen. Die wasserlöslichen Vitamine werden über die Niere rasch ausgeschieden.


Als Hypervitaminosen werden jene Erscheinungen zusammengefasst, die bei übermäßiger Zufuhr der entsprechenden Vitamine auftreten können. Dies ist durch herkömmliche Ernährung nicht zu erreichen. In Frage kommen aber hochdosierte Vitamingaben.


Vitamin D ist in Verbindung mit Calcium unstrittig bei der Behandlung der Osteoporose. Bei chronischer Einnahme von Konzentrationen über 0,3 mg/d kann durch die dauerhafte Ansammlung im Körper der gegenteilige Effekt erreicht werden, die Knochenentkalkung und damit die Entstehung einer Osteoporose werden gefördert. Das Provitamin Beta-Carotin (Vorstufe des Vitamin A) kann hochdosiert bei Rauchern vermutlich das Lungenkrebsrisiko erhöhen. Für die Vitamine der B-Gruppe (wasserlöslich) sind unerwünschte Wirkungen bei hohen Dosen nur für Vitamin B6 bekannt, bei Einnahme von mehr als 50 mg pro Tag – der zwanzigfachen Tagesdosis – resultiert eine sensorische Polyneuropathie.[13] Eine aktuelle Bewertung vom Bundesinstitut für Risikobewertung ist 2005 erschienen.


Spurenelement (auch Mikroelement) wird allgemein ein chemisches Element genannt, das nur in geringer Konzentration oder Spuren vorkommt; bei äußerst geringer Konzentration wird auch von Ultra-Spurenelement gesprochen.


Die Häufigkeiten chemischer Elemente unterscheiden sich erheblich, betrachtet man ihr Vorkommen im Sonnensystem, im Planet Erde, in Gesteinen der Erdkruste, im Wasser von Ozeanen oder beispielsweise im menschlichen Körper. Innerhalb der jeweiligen Häufigkeitsverteilung werden die häufigen Elemente als Mengenelemente von den seltenen Spurenelementen geschieden.


Während in der Geochemie Stoffanteile und Begleitelemente von Gesteinen und Mineralen in Konzentrationen unter 0,1 % bzw. 1000 ppm als Spurenelemente bezeichnet werden, bevorzugt die analytische Chemie meist einen Schwellenwert von 100 ppm bzw. 100 µg/g (= 100 mg/kg) oder 0,01 %. Davon zu unterscheiden ist der enger gefasste biologische Begriff:


Als essentielle Spurenelemente werden in der Biologie chemische Elemente bezeichnet, die für ein Lebewesen – umgangssprachlich meist auf den Menschen bezogen – (essentiell) nötig sind und in Massenanteilen von weniger als 50 mg/kg im Organismus vorkommen. Bei Konzentrationen von weniger als 1 µg/kg wird gelegentlich auch von Ultraspurenelementen gesprochen.[1] Mikroelemente gehören zu den Mikronährstoffen.


Eine zu geringe Menge oder gar das Fehlen essentieller Spurenelemente ruft in Lebewesen Mangelerkrankungen hervor. Durch solche Mangelerscheinungen – etwa einer Anämie bei Eisenmangel oder einer Schilddrüsenvergrößerung bzw. -unterfunktion bei Iodmangel – wird die Unentbehrlichkeit (Essentialität) eines Elementes offensichtlich. Andererseits können auch Spurenelemente – wie jeder Stoff ab einer gewissen Dosis – in zu hohen Mengen nachteilige Folgen haben.


Spurenelemente werden üblicherweise beim Essen und Trinken mit der Nahrung aufgenommen, die sie in Spuren enthält. Bei verminderter Aufnahme, vermehrter Ausscheidung oder erhöhtem Bedarf kann es zu einer Unterversorgung des Körpers mit Spurenelementen kommen. Mögliche Gründe dafür sind


Ernährungsgewohnheiten – z. B. geringe Auswahl, einseitige Bevorzugung, besondere Zubereitungsformen bzw. abtrennende Aufbereitungsprozesse von Lebensmitteln

Regionale Gegebenheiten – beispielsweise sehr geringes Vorkommen in Ackerboden oder Trinkwasser

erhöhter Verlust, etwa durch Durchfallerkrankungen oder starkes Schwitzen

veränderte Bedingungen für Aufnahme, Ausscheidung und Bedarf bei unterschiedlichen Stoffwechselerkrankungen

Medizinisch wird Eisen (Fe) wegen seiner Wirkungsweise den Spurenelementen zugeordnet, im Menschen ist es durchschnittlich mit etwa 60 mg/kg enthalten.


Fluor (F) zählt dagegen nicht zu den essentiellen Spurenelementen, allerdings hat Fluorid (F−) einen Karies vorbeugenden Effekt. Als angemessene Fluoridzufuhr für Erwachsene empfiehlt das Bundesinstitut für Risikobewertung (Jahr 2006) auch bei schwangeren und stillenden Müttern eine durchschnittliche Gesamtmenge von 3,1 mg pro Tag.[2] Ein ähnlicher Wert von 0,05 mg/kg Körpergewicht für die tägliche Zufuhr wird von dem die EU-Kommission wissenschaftlich beratenden Ausschuss für Nahrungsmittelsicherheit empfohlen (Jahr 2013).[3] Die tägliche Höchstmengenempfehlung (Tolerable Upper Intake Level, UL) beträgt 7 mg für Erwachsene[2] bzw. 0,1 mg/kg Körpergewicht[3]. Eine zu hohe Fluoridzufuhr kann zu einer Fluorose der Zähne (dentale Fluorose)[4] und des Skeletts (ossäre Fluorose) führen.


Für eine Reihe von Spurenelementen sehr geringer Konzentration (Bor, Brom, Cadmium, Blei, Lithium)[1] ist bis heute ungeklärt, ob sie nur als akzidenteller („zufälliger“) Bestandteil im Menschen vorkommen oder ob ihnen irgendeine physiologische Funktion zukommt.


Ein Antioxidans oder Antioxidationsmittel (Mehrzahl Antioxidantien, auch Antioxidanzien) ist eine chemische Verbindung, die eine Oxidation anderer Substanzen verlangsamt oder gänzlich verhindert.


Antioxidantien haben eine große physiologische Bedeutung durch ihre Wirkung als Radikalfänger. Sie inaktivieren im Organismus reaktive Sauerstoffspezies (ROS), deren übermäßiges Vorkommen zu oxidativem Stress führt, der in Zusammenhang mit dem Altern und der Entstehung einer Reihe von Krankheiten gebracht wird. Geringe, d. h. physiologische Mengen an ROS dagegen sind als Signalmoleküle, die die Stressabwehrkapazität, Gesundheit und Lebenserwartung von Modellorganismen und des Menschen steigern, durchaus erforderlich.[1][2][3][4][5] Eine nahrungsergänzende Zufuhr (Supplementierung) von Antioxidantien kann daher bestimmten Studien zufolge zu einer gesteigerten Krebshäufigkeit und zu einem erhöhten Sterberisiko des Menschen führen.[6][7]


Antioxidationsmittel sind außerdem von großer, insbesondere technologischer Bedeutung als Zusatzstoffe für verschiedenste Produkte (Lebensmittel, Arzneimittel, Bedarfsgegenstände, Kosmetik, Gebrauchsmaterialien), um darin einen – besonders durch Luftsauerstoff bewirkten – oxidativen Abbau empfindlicher Moleküle zu verhindern. Der oxidative Abbau bestimmter Inhaltsstoffe oder Bestandteile wirkt sich wertmindernd aus, weil sich Geschmack oder Geruch unangenehm verändern (Lebensmittel, Kosmetika), die Wirkung nachlässt (bei Arzneimitteln), schädliche Abbauprodukte entstehen oder physikalische Gebrauchseigenschaften nachlassen (z. B. bei Kunststoffen).


Nach Art des chemischen Wirkmechanismus werden Antioxidantien in Radikalfänger und Reduktionsmittel unterschieden. Im weiteren Sinne werden auch Antioxidations-Synergisten zu den Antioxidantien gerechnet.


Bei Oxidationsreaktionen zwischen organischen Verbindungen treten vielfach kettenartige Radikalübertragungen auf. Hier werden Stoffe mit sterisch behinderten Phenolgruppen wirksam, die im Ablauf dieser Übertragungen reaktionsträge stabile Radikale bilden, die nicht weiter reagieren, wodurch es zum Abbruch der Reaktionskaskade kommt (Radikalfänger). Zu ihnen zählen natürliche Stoffe wie die Tocopherole und synthetische wie Butylhydroxyanisol (BHA), Butylhydroxytoluol (BHT) und die Gallate. Sie sind wirksam in lipophiler Umgebung.


Reduktionsmittel

Reduktionsmittel haben ein sehr niedriges Redox-Potential – ihre Schutzwirkung kommt dadurch zustande, dass sie eher oxidiert werden als die zu schützende Substanz.[8] Vertreter sind etwa Ascorbinsäure (−0,04 V bei pH 7 und 25 °C), Salze der Schwefligen Säure (+0,12 V bei pH 7 und 25 °C) und bestimmte organische schwefelhaltige Verbindungen (z. B. Glutathion, Cystein, Thiomilchsäure), die vorwiegend in hydrophilen Matrices wirksam sind.


Antioxidationssynergisten

Synergisten unterstützen die Wirkung von Antioxidantien, beispielsweise, indem sie verbrauchte Antioxidantien wieder regenerieren. Durch Komplexierung von Metallspuren (Natrium-EDTA[9]) oder Schaffung eines oxidationshemmenden pH-Wertes können Synergisten die antioxidative Wirkung eines Radikalfängers oder Reduktionsmittels verstärken.


Vorkommen

Natürliche Antioxidantien

Viele Antioxidantien sind natürlich und endogen vorkommende Stoffe. Im Säugetierorganismus stellt das Glutathion ein sehr wichtiges Antioxidans dar, auch eine antioxidative Aktivität von Harnsäure und Melatonin ist bekannt. Ferner sind Proteine wie Transferrin, Albumin, Coeruloplasmin, Hämopexin und Haptoglobin antioxidativ wirksam. Antioxidative Enzyme, unter denen die wichtigsten die Superoxiddismutase (SOD), die Glutathionperoxidase (GPX) und die Katalase darstellen, sind zur Entgiftung freier Radikale in den Körperzellen ebenfalls von entscheidender Bedeutung. Für ihre enzymatische Aktivität sind Spurenelemente wie Selen, Kupfer, Mangan und Zink wichtig. Als antioxidativ wirksames Coenzym ist Ubichinon-10 zu nennen. Für den menschlichen Organismus essentiell notwendige und antioxidativ wirksame Stoffe wie Ascorbinsäure (Vitamin C), Tocopherol (Vitamin E) und Betacarotin (Provitamin A) können nicht bedarfsdeckend synthetisiert werden und müssen mit der Nahrung zugeführt werden (exogene Antioxidantien). Eine Reihe von Antioxidantien werden als Bestandteil der Muttermilch an den Säugling weitergegeben, um dort ihre Wirkung zu entfalten.


Als sekundäre Pflanzenstoffe kommen Antioxidantien wie Carotinoide und verschiedenste polyphenolische Verbindungen (Flavonoide, Anthocyane, Phytoöstrogene, Nordihydroguajaretsäure und andere) in zahlreichen Gemüse- und Obstarten, Kräutern, Früchten, Samen etc. sowie daraus hergestellten Lebensmitteln vor.


Zu den künstlichen Antioxidationsmitteln zählen die Gallate, Butylhydroxyanisol (BHA) und Butylhydroxytoluol (BHT). Durch eine synthetische Veresterung der Vitamine Ascorbinsäure und Tocopherol wird deren Löslichkeit verändert, um das Einsatzgebiet zu erweitern und verarbeitungstechnische Eigenschaften zu verbessern (Ascorbylpalmitat, Ascorbylstearat, Tocopherolacetat).


Freie Radikale sind hochreaktive Sauerstoffverbindungen, die im Körper gebildet werden und in verstärktem Maß durch UV-Strahlung und Schadstoffe aus der Umwelt entstehen. Ihr Vorkommen im Übermaß (oxidativer Stress) erzeugt Zellschäden und gilt nicht nur als mitverantwortlich für das Altern, sondern wird auch in Zusammenhang mit der Entstehung einer Reihe von Krankheiten gebracht. Geringe, d.h. physiologische Mengen an ROS dagegen sind als Signalmoleküle, die die Stressabwehrkapazität, Gesundheit und Lebenserwartung von Modellorganismen und des Menschen steigern, erforderlich. Einen Schutz vor den schädlichen Folgen zu hoher Mengen an freien Radikalen stellt das körpereigene Abwehrsystem dar, welches durch geringe Mengen an ROS – einer Impfung ähnlich – immer wieder aktiviert wird (siehe auch Mitohormesis).


Außer endogen gebildeten Antioxidantien wirken im Abwehrsystem auch solche, die mit der Nahrung zugeführt werden. Eine gesunde Ernährung unter Einbeziehung von mit an antioxidativ wirksamen Stoffen reichen Lebensmitteln gilt als effektive Vorbeugung vor Herz-Kreislauferkrankungen[14], eine Schutzwirkung vor bestimmten Krebsarten wird als möglich erachtet. Beides jedoch wird inzwischen nicht mehr als durch aussagekräftige Studien gesichert betrachtet.[15][16] Neuere Studien einer schwedischen Forschergruppe erbrachten vielmehr bei Versuchen an Mäusen inzwischen Indizien dafür, dass Antioxidantien bei Hautkrebs diesen schneller Tochtergeschwulste bilden lässt – „die Ergebnisse müssen allerdings noch am Menschen bestätigt werden“.[17]


Die neueren wissenschaftlichen Erkenntnisse veranlassten die Zeitschrift Nature, die Behauptung, dass freie Radikale eine schnellere Alterung bewirkten und diese Wirkung durch Antioxidantien verhindert werden könne, als Mythos zu bezeichnen. „Die Vorstellung von Oxidation und Altern wird von Leuten am Leben gehalten, die damit Geld verdienen.“[18] Als Vitamine oder Vorstufen von Vitaminen haben die Antioxidantien beta-Carotin, Vitamin A, Vitamin C und Vitamin E demzufolge, von der Vorbeugung heutzutage extrem seltener Mangelerscheinungen abgesehen, keinerlei erwiesene Rolle für die menschliche Gesundheit. Vielmehr bewirkt die nahrungsergänzende Zufuhr von Vitamin E sowie Vitamin A und dessen Carotinoid-Vorstufen beim Menschen eine gesteigerte Entstehung von Krebs sowie eine Verringerung der Lebenserwartung[19][20], während Vitamin C als Supplement bestenfalls wirkungslos ist.


Die Beurteilung polyphenolischer Pflanzeninhaltsstoffe dagegen ist in diesem Zusammenhang deutlich besser gesichert, und die wissenschaftliche Beweislage für die gesundheitsfördernde Wirkung bestimmter Polyphenole, besonders der im Tee, Kakao, Beeren und Rotwein vorkommenden Flavanole, hat sich in den letzten Jahren verstärkt.[21][22][23][24] Dies scheint aber nicht damit in Verbindung zu stehen, dass diese Substanzen antioxidative Eigenschaften in vitro besitzen.[25] Ein Expertengutachten geht davon aus, dass die antioxidative Kapazität, welche die Polyphenole und Flavonoide in vitro zeigen, kein Messwert für deren Wirkung im menschlichen Körper ist.[25] Die Europäische Behörde für Lebensmittelsicherheit (EFSA) schloss sich dieser Einschätzung weitgehend an.[26][27]


Häufigste Lebensmittelquellen

Nach einer US-amerikanischen Untersuchung aus dem Jahr 2005 stammt der mit Abstand größte Teil der mit der täglichen Nahrung zugeführten physiologischen Antioxidantien in den USA aus dem Genussmittel Kaffee, was allerdings weniger daran liege, dass Kaffee außergewöhnlich große Mengen an Antioxidantien enthalte, als vielmehr an der Tatsache, dass die US-Amerikaner zu wenig Obst und Gemüse zu sich nähmen, dafür aber umso mehr Kaffee konsumierten.


Als pflanzliche Stoffe werden in Pflanzen enthaltene chemische Substanzen zusammengefasst, deren Bedeutung in der menschlichen Ernährung unklar ist, die jedoch günstige Eigenschaften haben könnten. Dazu gehören etwa Flavonoide, pflanzliche Sterole sowie pflanzliche Schwefelverbindungen (z. B. aus Knoblauch und Lauch).


Der Körper benötigt Wasser vor allem aufgrund von Verlusten durch die Atmung, für Stoffwechselvorgänge und Kühlung durch Verdunstung über die Haut. Der tägliche Wasserbedarf eines Menschen bezogen auf das Körpergewicht ρ beträgt etwa {\displaystyle 40{\tfrac {\mathrm {ml} }{\mathrm {kg} }}} {\displaystyle 40{\tfrac {\mathrm {ml} }{\mathrm {kg} }}}.


Beispiel

Der Wasserbedarf VW einer Person P mit einer Masse mP von 80 kg beträgt pro Tag:

{\displaystyle V_{W}=\rho \cdot m_{p}=40\,{\frac {\mathrm {ml} }{\mathrm {kg} }}\cdot 80\,\mathrm {kg} =3\,200\,\mathrm {ml} =3{,}2\,l} {\displaystyle V_{W}=\rho \cdot m_{p}=40\,{\frac {\mathrm {ml} }{\mathrm {kg} }}\cdot 80\,\mathrm {kg} =3\,200\,\mathrm {ml} =3{,}2\,l}

Da der Körper bei heißem Wetter und bei körperlicher Betätigung zusätzliche Wärme über Verdunstung abführen muss, kann der Wasserbedarf auch höher liegen. Ein Liter Wasser kann 600 kcal an Wärme durch Verdunstung abführen. Da die abzuführende Energiemenge abhängig von den Wetterbedingungen, der konkreten Betätigung und den physischen Gegebenheiten des Menschen individuell verschieden ist, stellt der angegebene Wert nur einen Richtwert dar.


Ein Mensch benötigt in der Stunde etwa 1 kcal (= 4,1868 kJ) Energie je Kilogramm Körpergewicht an Grundumsatz.


Beispiel

Der Energiebedarf EP einer Person P mit einer Masse mP von 80 kg an einem Tag beträgt:

{\displaystyle E_{P}=1\,{\frac {\mathrm {kcal} }{\mathrm {kg\,h} }}\cdot 80\,\mathrm {kg} \cdot 24\,\mathrm {h} =1\,920\,\mathrm {kcal} \approx 8\,039\,\mathrm {kJ} } {\displaystyle E_{P}=1\,{\frac {\mathrm {kcal} }{\mathrm {kg\,h} }}\cdot 80\,\mathrm {kg} \cdot 24\,\mathrm {h} =1\,920\,\mathrm {kcal} \approx 8\,039\,\mathrm {kJ} }

Aufgrund von Aktivitäten hat der Körper einen zusätzlichen Energieverbrauch, den Leistungsumsatz. Der Gesamtumsatz ist die Summe aus Grundumsatz und Leistungsumsatz.


In einer ausgewogenen Ernährung sollte – über einen Zeitraum von mehreren Tagen gemittelt – etwa 55 % des Energiebedarfs aus Kohlenhydraten, mindestens 15 % aus Proteinen und 30 % aus Fetten stammen.[31] Für Low-Carb-Diäten kann auch der Anteil der Fette höher und im Gegenzug der Anteil an Kohlenhydraten niedriger ausfallen. Die Voraussetzung bilden jedoch besonders hochwertige Fette.


Wird Sport oder körperlich anstrengende Arbeit ausgeübt, muss aufgrund des höheren Energieverbrauchs zusätzliche Energie zugeführt werden. Abhängig von der Intensität der Aktivität – und damit der Belastungszone – werden vom Körper unterschiedliche Energiequellen benötigt.


Hierbei ist


Hohe Intensität

Dauer von unter einer Stunde mit hohem Aktivitätsgrad wie schnelles Laufen (5 km bis 10 km), Basketball, Tennis, Hockey, Fußball etc.

Mittlere Intensität

Dauer von einer bis drei Stunden mit mittlerem Aktivitätsgrad wie Marathon, Triathlon, schnelles Fahrradfahren etc.

Geringe Intensität

Dauer von mehr als drei Stunden mit geringem Aktivitätsgrad wie Fahrradfahren, Wandern etc.


Alle Tiere sind auf eine Reihe von Nährstoffen angewiesen, die ihr Körper nicht selbst synthetisieren kann. Diese Nährstoffe nennt man essenziell (lebensnotwendig). Dazu zählen auch Vitamine. Vitamine (lateinisch: vita = Leben) werden in geringsten Mengen (µg/kg pro Tag) benötigt. Sie wirken meist als Cofaktoren zu Enzymen. Während Pflanzen keine Vitamine benötigen, kann der Mensch manche Stoffe nicht selbst bilden und ist daher obligatorisch auf deren Zufuhr angewiesen. Von essenziellen Aminosäuren und den essenziellen ungesättigten Fettsäuren Linol- und Linolensäure benötigte der Mensch täglich größere Mengen (mg/kg pro Tag).


Entspricht die Menge oder die Zusammenstellung einer Ernährung nicht den Anforderungen des menschlichen Organismus, so spricht man von Fehl- oder Mangelernährung. Diese Bezeichnungen werden gelegentlich synonym verwendet; Fehlernährung ist allerdings weiter gefasst als Mangelernährung, da Fehlernährung sowohl eine Unter- als auch eine Überversorgung mit Nahrungsbestandteilen beschreibt. Mangelernährung bedeutet dagegen stets eine Unterversorgung mit bestimmten, essenziellen Nahrungsbestandteilen. Eine Fehlernährung durch Überversorgung, insbesondere mit Nahrungsenergie, wird im Allgemeinen mit der Ernährungssituation in Industrieländern in Verbindung gebracht, während eine Mangelernährung als typisch für sogenannte Entwicklungsländer gesehen wird.[21] Trotz der allgemeinen Überversorgungen ist die mangelhafte Versorgung mit einzelnen Nahrungsbestandteilen aber auch in Industrieländern eine häufige Krankheitsursache. Hier wird sie durch eine falsche Nahrungszusammensetzung verursacht, tritt aber auch als sekundärer Effekt, zum Beispiel als Folge krankheitsbedingter Malabsorption auf.[47] Spezielle Ernährungsformen wie Vegetarismus sind dagegen an sich keine Ursache von Mangelernährung, sie sind, im Gegenteil, oft sogar mit einem besseren Ernährungsstatus verknüpft.[48]


In den Industrieländern ist die Überernährung, als häufigster Faktor der Fehlernährung, für einen großen Teil der hohen und stetig steigenden Kosten im Gesundheitswesen verantwortlich. Übergewicht erhöht das Risiko von Herz-Kreislauferkrankungen und zwar sowohl direkt, als auch indirekt über die Begünstigung weiterer Risikofaktoren, wie zum Beispiel hohe Cholesterinwerte, Bluthochdruck oder Diabetes mellitus. Sowohl Über- als auch Unterversorgung mit Nahrungsenergie haben zudem einen negativen Einfluss auf das Immunsystem und reduzieren die Infektionsresistenz. Unter den Mangelernährungen ist die Protein-Energie-Malnutrition (PEM), mit den Krankheitsbildern Marasmus und Kwashiorkor, die häufigste Form der Fehlernährung und vor allem in industriell weniger entwickelten Ländern anzutreffen. Weitere in größerem Umfang anzutreffende Formen der Mangelernährung sind Mikronährstoffmängel, insbesondere Anämien sowie Vitamin-A- und Jodmangel. Seltener treten dagegen der Vitamin-D-Mangel mit dem Krankheitsbild der Rachitis, der Vitamin-C-Mangel (Skorbut), Thiaminmangel (Beriberi) und Niacinmangel (Pellagra) auf.


Fehl- und Mangelernährung können ihrerseits Krankheiten verursachen oder begünstigen, etwa Skorbut bei Vitamin-C-Mangel, Beriberi bei Vitamin-B1-Mangel oder Diabetes mellitus bei Adipositas (starkem Übergewicht). Für diese und andere Krankheiten, vor allem für die Mangelerkrankungen, ist der Zusammenhang mit Fehl- oder Mangelernährung wissenschaftlich bewiesen.


Des Weiteren gibt es eine große Zahl an Krankheiten, insbesondere die Zivilisationskrankheiten, für die diskutiert wird, ob sie durch die moderne Ernährungsweise zumindest mitverursacht werden, zum Beispiel Arteriosklerose, Bluthochdruck und Krebs.[49] Einen wissenschaftlichen Nachweis dieser Annahme gibt es bisher nur für wenige Erkrankungen. Generell sind Zusammenhänge zwischen Ernährung und Krankheit, methodisch bedingt, schwierig nachzuweisen. Für die meisten Zivilisationskrankheiten gibt es höchstwahrscheinlich nicht nur eine einzige Ursache, sondern eine Kombination von Ursachen, darunter genetische Veranlagung, unzureichende körperliche Aktivität, Ernährung und Umwelteinwirkungen.


Im globalen Maßstab befasst sich die Food and Agriculture Organization (FAO) der Vereinten Nationen (UNO) mit für die Menschheit zentralen ernährungspolitischen Fragen. Besonders in den sogenannten Entwicklungsländern bekämpft die FAO mit unterschiedlichen Projekten Mangel- und Unterernährung. Dabei werden auch traditionelle Nahrungsquellen neu erschlossen, wie im Projekt Edible Forest, das in tropischen und subtropischen Regionen für den Verzehr von Insekten zur ausreichenden Versorgung mit tierischem Eiweiß wirbt.[50]


In Deutschland spielt sowohl auf Bundesebene als auch auf der jeweiligen Landesebene das Thema Ernährung politisch eine Rolle. Während es gegenwärtig auf Bundesebene beim Bundesministerium für Ernährung und Landwirtschaft angesiedelt ist, gibt es in den Bundesländern unterschiedliche Zuständigkeiten, teilweise ist es dort dem Verbraucherschutz zugeordnet. Wichtigste Entwicklung in der Ernährungspolitik ist der Nationale Aktionsplan IN FORM – Deutschlands Initiative für gesunde Ernährung und mehr Bewegung. Es handelt sich dabei um eine gemeinsame Initiative von Bund, Ländern und Kommunen zur Verbesserung des Ernährungs- und Bewegungsverhaltens der gesamten deutschen Bevölkerung. Koordiniert wird dieser auf Kabinettsbeschluss von Juni 2008 beruhende Aktionsplan auf Bundesebene in Ernährungsfragen vom BMELV mit Sitz in Bonn.





 
 
 

コメント


この投稿へのコメントは利用できなくなりました。詳細はサイト所有者にお問い合わせください。
bottom of page